martes, 8 de diciembre de 2015

Uniad 5.- TRANSFORMACIONES LINEALES

5.1 Introducción a las transformaciones lineales.

Definición: Las transformaciones lineales son las funciones y tratan sobre K-espacios vectoriales que son compatibles con la estructura (es
decir, con la operación y la acción) de estos espacios.

Aquí se presentan las funciones entre espacios vectoriales que preservan las cualidades de los
espacios vectoriales. Es decir, de funciones que preservan la suma y la multiplicación por escalares.

Nosotros usaremos el concepto de la función para darle un tratamiento a los sistemas de ecuaciones lineales. La restricción que haremos sera sobre el tipo de funciones: solo estaremos interesados en funciones que preserven las operaciones en el espacio vectorial. Este tipo de funciones serán llamadas funciones lineales. Primeramente las definiremos, veremos algunas propiedades generales y después veremos como se aplican estos resultados a sistemas de ecuaciones.

Sean V y W dos espacios vectoriales posiblemente iguales.
 Una transformación lineal o mapeo lineal de V a W es una función
T : V → W tal que para todos los vectores u y v de V y cualquier escalar c:
         a) T (u + v) = T (u) + T (v)
         b) T (c u) = c T (u)


Demuestre que la transformación T : R2 →R2 definida por                        
es lineal. 
                  
                  
Entonces : 
                    
   
Por otro lado, para todo escalar c, 
                              
          
Como se cumplen las dos condiciones:      
                      
     
T es lineal.


Una transformación lineal preserva combinaciones lineales. Veremos que, debido a esto, una transformación lineal queda unívoca-mente determinada por los valores que toma en los elementos de una base cualquiera de su dominio.

Teniendo en cuenta que las transformaciones lineales son funciones entre conjuntos, tiene sentido estudiar la validez de las propiedades usuales de funciones: inyectividad, suryectividad y biyectividad. 

Las transformaciones lineales que verifican alguna de estas propiedades reciben nombres particulares:
Definición 3.6 Sean V y W dos K-espacios vectoriales, y sea f : V → W una transformación lineal. Se dice que:

1. f es un monomorfismo si f es inyectiva.
2. f es un epimorfismo si f es suryectiva.
3. f es un isomorfismo si f es biyectiva.

En algunos casos, consideraremos transformaciones lineales de un K-espacio vectorial en s ́ı mismo:
Sea V un K-espacio vectorial. Una transformación lineal f : V → V se llama un endomorfismo de V . Si f es un endomorfismo que es además un isomorfismo, entonces se dice que es un automorfismo.

5.2 Núcleo e imagen de una transformación lineal.

Transformaciones lineales: núcleo e imagen.
Teorema  1
Sea Tuna transformación lineal. Entonces para todos los vectores uv,v1,
v2, . . . , ven y todos los escalares a1a2, . . . , an:
i. T(00
ii. T(vTTv
iii. T(a1v+ a2v+. . .+ anvn= a1Tv+ a2Tv+. . .+ anTvn
Nota. En la parte i) el de la izquierda es el vector cero en V; mientras que el 0de la
derecha es el vector cero en W.


Teorema 2
Sea un espacio vectorial de dimensión finita con base {v1v2, . . . , vn}. Sean w1,
w2, . . . , wvectores en W. Suponga que TTson dos transformaciones lineales de V
en tales que T1vT2vwpara 1, 2, . . . , n. Entonces para cualquier vector 
VT1T2v; es decir TT2.

Ejemplo



Definición 1 Núcleo e imagen de una transformación lineal
Sean V y W dos espacios vectoriales y sea T:V W una transformación lineal. Entonces

i . El núcleo de T, denotado por un, está dado por
ii. La imagen de T, denotado por Im T, esta dado por


Observacion 1. Observe que un T es no vacio porque, de acuerdo al teorema 1, T(0) = 0 de manera que 0 ϵ un T para cualquier transformación lineal T. Se tiene interés en encontrar otros vectores en V que “se transformen en 0”. De nuevo, observe que cuando escribimos T(0) = 0, el 0 de la izquierda está en V y el de la derecha en W.

Observación 2. La imagen  de T es simplemente el conjunto de “imajenes” de los vectores en V bajo la transformación T. De hecho, si w = Tv, se dice que w es la imagen de v bajo T.

Antes de dar ejemplos de núcleos e imágenes , se demostrará un teorema de gran utilidad.

Teorema 4
Si T:V W es una transformación lineal, entonces
i.Un T es un subespacio de V.
ii.Im T es un subespacio de W.

Demostracion
i.Sean u y v en un T; Entonces T(u + v) = Tu + Tv =0 + 0 =0 y T( ) =  = 0 = 0 de forma que u + v y ∝u están en un T.
ii. Sean w y x en Im T. Entonces w = Tu y x = Tv para dos vestores u y v en V. Esto significa que T(u + v)= Tu + Tv = w + x y T(∝u) = ∝Tu =∝w. Por lo tanto, w + x y ∝w están en Im T.

Ejemplo 3.  Núcleo e imagen de la transformación cero
Sea Tv = 0 para todo vϵ V(T es la transformación cero). Entonces un T = v e Im T = {0}.

Ejemplo 4   Núcleo e imagen de la transformación identidad
Sea Tv = v para vϵ V(T es la transformación identidad). Entonces un T= {0} e Im T = V.

Las transformaciones cero e identidad proporcionan dos extremos. En la primera todo se                     encuentra en el núcleo. En la segunda sólo el vector cero se encuentra en el núcleo. Los casos intermedios son más interesantes.

Ejemplo 5 Núcleo e imagen de un operador de proyección 

Sea T:R3 R3 definida por
T es el operador de proyección de R3 en el plano xy.

Entonces x = y = 0. Así, nu T = {(x,y,z):x  = y = 0, zϵR}, es decir, el eje z, e Im T = {(x,y,z): z = 0}, es decir el  plano xy. Observe que dim un T = 1 y dim Im T = 2.

Definición 2      Nulidad y rango de una transformación lineal
Si T es una transformación lineal de v en w, entonces se define.

Toda matriz A de m*n da lugar a una transformación lineal T:R´´ R´´´ definida por Tx = Ax. Es evidente que un T = NA, Im T = Im A = CA, v(T) = v(A) y p(T) = p(A). Entonces se ve que las definiciones de núcleo, imagen, nulidad y rango de una transformación lineal son extensiones del espacio nulo, la imagen, la nulidad y el rango de una matriz.
5.3 La matriz de una transformación lineal.

La matriz de una transformación lineal
Desde el punto de vista algebraico lineal, las transformaciones más importantes son las aquellas que conservan las combinaciones lineales. Estas son llamadas transformaciones lineales o aplicaciones lineales. Una transformación lineal es una parte esencial en el álgebra lineal. La idea principal detrás de la “Matriz de una transformación lineal” es la definición de la matriz de T con respecto a las bases arbitrarias del dominio de V y el codominio de W. En este caso, V y W son espacios vectoriales de dimensión finita sobre F, y T: V → W es una transformación lineal.
Sea V y W espacios vectoriales de finita dimensión sobre F, e imagina que T: V! W es lineal. Fija una base
B = {v1, v2. . . vn}
de V y una base de
B0 = {w1, w2. . . wm}
de W. Ahora definimos la matriz MBB’ (T) de T con respecto a estas bases. Puesto que B0 es una base de W, cada T (vj) puede escribirse únicamente como
T(v j) =
Por lo tanto la matriz de T, en definitiva, con respecto a las bases B y B0 se define como la matriz MBB’ (T) = (cij ) m × n . ¿Lo qué dice esta definición es que la columna jth de la matriz MBB’(T) es el vector columna formado por los coeficientes de T(vj) con respecto a la base B0? Uno puede expresar el término anterior en forma matricial mediante
(T(v1) T(v2) • • • T(v n)) = (w1 w2 • • •wm)MBB ’(T).
Es importante tener en cuenta que si V = Fn, W = Fm y T = TA, donde A Fm×n, entonces MBB’(T) = A si B y B0 son las bases estándares. De TA (ej) es siempre la columna jth de A.
Ahora, sea V el espacio de polinomios reales de al menos tres grados, y W el espacio de polinomios reales de a lo sumo dos grados. Entonces, la diferenciación es una transformación lineal D: V → W. Ahora
D (ax3 + bx2 + cx + d) = 3ax2 + 2bx + c.
Sea B la base {1, x, x2, x3} de V y B0 la base {1, x, x2} de W. Ahora,
D (1) = 0, D(x) = 1, D(x2) = 2x, D(x3) = 3×2.
Así
MBB’(D) =
Ahora bien, supongamos que T: V → V es una transformación lineal diagonalizable (o semi-simple). Recordemos que esto significa que existe una base B = {v1, v2. . . vn} de V tal que (vi) = vi para cada índice i entre 1 y n. Por lo tanto, B es una base propia de V para T. En este caso, MBB (T) es la matriz diagonal .
Pero, ¿Qué es la matriz de T con respecto a alguna otra base B0 de V? El primer paso para responder a esta pregunta es encontrar cómo relacionar las expansiones de un vector dado de V con respecto a dos bases distintas. Esto por sí solo constituye un concepto diferente y más amplio que necesita de un conocimiento muy superior y más profundo de las matemáticas .

5.4 Aplicación de las transformaciones lineales: reflexión, dilatación, contracción y rotación.

Aplicación de las transformaciones lineales: reflexión, expansión, contracción y rotación
Graficar un conjunto de puntos en otro es lo que se conoce como transformación lineal de un conjunto de puntos. Existen ciertas propiedades básicas de las transformaciones lineales, las cuales si son tomadas en cuenta y aplicadas al momento de resolver un problema, pueden reducirlo un problema simple. La notación general utilizada para una transformación lineal es T: Rn  Rm.
1. Reflexión: Cuando un conjunto de puntos dados es graficado desde el espacio euclidiano de entrada a otro de manera tal que este es isométrico al espacio euclidiano de entrada, llamamos a la operación realizada la reflexión del conjunto de puntos dado. Esto puede realizarse también con respecto a la matriz, en tal situación la matriz de salida es llamada la matriz de reflexión. La reflexión es realizada siempre con respecto a uno de los ejes, sea el eje x o el eje y. Esto es como producir la imagen espejo de la matriz actual.
2. Expansión: Al igual que en la reflexión, también es posible expandir los puntos dados en una dirección particular. La expansión se realiza habitualmente para un cierto grado. Es como realizar una operación de multiplicación de los elementos del conjunto de puntos dados con un término escalar hacia la dirección donde tiene que ser expandido. Sea para un punto (2, 3) si el grado de expansión 2 es la dirección de y, entonces el nuevo punto obtenido es (2, 6).
3. Contracción: La contracción es el procedimiento inverso de la expansión. Aquí el punto es contraído en un determinado grado hacia una dirección dada. Sea el punto de entrada (4, 8) y este debe ser contraído para el grado dos en la dirección de x entonces el nuevo punto resulta ser (2, 8).
4. Rotación: El término rotación tiene dos significados, ya la rotación de un objeto puede ser realizada con respecto al eje dado o al eje mismo. La rotación se realiza para un cierto grado el cual es expresado en forma de un ángulo. Asimismo, la rotación puede realizarse en la dirección de las manecillas del reloj, o inverso a las manecillas del reloj.
Como ejemplo, dirijámonos a producir la matriz estándar para la representación de la transformación lineal reflejando un conjunto de puntos en el plano x-y a través de la recta y = (−2x / 3).
El primer paso para esto es determinar los vectores base.
Por lo tanto, podemos afirmar que,
Dado que y pertenece a R2. Imagina que A: R2  R2 es una transformación lineal, entonces podemos escribir que,
La imagen de la matriz base determina la imagen de cualquier elemento. Por lo tanto la imagen de a través de y = (−2x/ 3) es determinada mediante la obtención de una recta que pasa por (1, 0) y es que es ortogonal a . Esto está dado por y = (3x/ 2) – (3/ 2).
El punto donde las dos rectas, esto es, y = (3x/ 2) – (3/ 2) e y = (−2x/ 3) se intersectan se dado como (9/13, −6/13). Tomamos p¬1¬ para ser el punto de reflexión de a través de la recta dada. Este punto es simétrico respecto a (9/13, −6/13) por lo tanto, podemos escribir que,
Esto produce,
De manera similar, la imagen del vector base resulta ser
Y tenemos la matriz de transformación lineal final como,
- See more at: http://mitecnologico.com/igestion/Main/AplicacionDeLasTransformacionesLineales#sthash.6IJIH1Qs.dpuf

Unidad 4.- ESPACIOS VECTORIALES

4.1 Definición de espacio vectorial.
Espacio vectorial real.

Un espacio vectorial real es un conjunto de objetos, denominados vectores, junto con dos operaciones binarias llamadas suma multiplicación por un escalar y que satisfacen los diez axiomas enumerados a continuación.


NotaciónSi “x” y “y” están en V  y si a es un número real, entonces la suma se escribe como
 “y” y el producto escalar de a como ax.

Antes de presentar la lista de las propiedades que satisfacen los vectores en un espacio vectorial deben mencionarse dos asuntos de importancia. En primer lugar, mientras que puede ser útil pensar en R2 o R3  al manejar un espacio vectorial, con frecuencia ocurre que el espacio vectorial parece ser muy diferente a estos cómodos espacios (en breve tocaremos este tema). En segunda instancia, la definición 1 ofrece una definición de un espacio vectorial real. La palabra “real” significa que los escalares que se usan son números reales. Sería igualmente sencillo definir un espacio vectorial complejo utilizando números complejos en lugar de reales. Este libro está dedicado principalmente a espacios vectoriales reales, pero las generalizaciones a otros conjuntos de escalares presentan muy poca dificultad. [1]
Axiomas de un espacio vectorial. [1]

1-     Si X pertenece a V y Y pertenece a V, entonces X+Y pertenece a V.

2-      Para todo X, Y y Z en V, (x+y)+z = x(y+z).
3-     Existe un vector |0 pertenece V tal que para todo X pertenece a V, X+0=0+X=X.
4-     Si x pertenece a V, existe un vector –x en V tal que x+(-x)=0.
5-     Si X y Y están en V, entonces x+y=y+x.
6-     Si x pertenece a V y a es un escalar, entonces ax pertenece a V.
7-     Si X y Y están en V y a es un ecalar, entonces a(x+y)= ax + ay
8-     Si X pertenece a V y a y b son escalares, entonces (a+b) x = ax+ by.
9-     Si X pertenece a V y a y b son escalares, entonces a(bx) = (ab)x.
10-   Para cada vector X pertenece a V, 1x = x.

Bibliografía:1) Grossman S, S.I., Álgebra Lineal Sexta Edición, 2007.

4.2 Definición de subespacio vectorial y sus propiedades.
DEFINICION DE SUB ESPACIO VECTORIAL 
Sea H un subconjunto no vacío de un espacio vectorial V y suponga que H es en sí un espacio vectorial bajo las operaciones de suma y multiplicación por un escalar definidas en V. Entonces se dice que H es un sub espacio de V. 
Existen múltiples ejemplos de sub espacio, sin embargo, en primer lugar, se demostrará un resultado que hace relativamente sencillo determinar si un subconjunto de V es en realidad sub espacio de V
Teorema de sub espacio
Un subconjunto no vacio de H de un espacio vectorial V es un sub espacio de V si se cumplen las dos reglas de cerradura:
Reglas de cerradura para ver si un subconjunto no vació es un sub espacio
i)                  Si € H y € H, entonces x + y € H.
ii)               Si € H, entonces α€ para todo escalar α.
Es obvio que si H es un espacio vectorial, entonces las dos reglas de cerradura se deberán cumplir. De lo contrario, para demostrar que es un espacio vectorial, se deberá demostrar que los axiomas i) a x) de la definición cumplen bajo las operaciones de suma de vectores y multiplicación por un escalar definidas en V. Las dos operaciones de cerradura [axiomas i) y iv)] se cumplen por hipótesis, como los vectores en H son también vectores en V, las identidades asociativa, conmutativa, distributiva y multiplicativa [axiomas ii), v), vii), viii), ix) x)] se cumplen.
Este teorema demuestra que para probar si es o no es un sub espacio de V, es suficiente verificar que:
x + y y αX están en cuando x y  están en y α es un escalar.

PROPIEDADES DE SUB ESPACIO VECTORIAL

1). El vector cero de V está en H.2

2). H es cerrado bajo la suma de vectores. Esto es, para cada u y v en   
      H, la suma u + v está en H.

3). H es cerrado bajo la multiplicación por escalares. Esto es, para cada
     u en H y  cada escalar c, el vector cu está en H. 

4.3 Combinación lineal. Independencia lineal.

Los vectores son linealmente independientes si tienendistinta dirección y sus componentes no son proporcionales.
Un conjunto de vectores {v1,v2,…,vk} es un espacio vectorial V es linealmente dependiente si existen escalares c1,c2,…,ckal menos uno de los cuales no es cero, tales que:
c1v1+c2v2+…+ckvk=0
Si los vectores no son linealmente dependientes, se dice que son linealmente independientes.

Criterios de Independencia Lineal
Sean u1, u2, …,uk k vectores en Rn y A la matriz que tiene como columnas a estos vectores, los vectores son linealmente independientes si el sistema Ax = 0 tiene únicamente solución trivial.
Los vectores son linealmente dependientes si el sistema Ax=0 tiene soluciones no triviales (solución múltiple).
Si k=n
Los vectores son linealmente independientes si A es invertible
Si k>nLos vectores son linealmente dependientes.
Dos vectores en un espacio vectorial son linealmente dependientes si uno de ellos es múltiplo escalar del otro.
Un conjunto de vectores linealmente independientes en n contiene a lo más n vectores.
Tres vectores en 3 son linealmente dependientes si y sólo si son coplanares, esto es, que están en un mismo plano. 

Teoremas
  1. Cualquier conjunto que contenga al vector 0 es linealmente dependiente.
  2. Cualquier conjunto que contenga un único vector diferente de cero, v ≠0, es linealmente independiente.
  3. Cualquier conjunto formado por dos vectores diferentes de cero, S = {v1, v2}, donde v≠ 0, v≠ 0, es linealmente dependiente si, y sólo si, uno de los vectores es múltiplo escalar del otro.
  4. Cualquier conjunto que contenga un subconjunto linealmente dependiente es linealmente dependiente.
  5. Cualquier subconjunto  de un conjunto linealmente independiente es linealmente independiente.

4.4 Base y dimensión de un espacio vectorial.


Base y dimensión de un espacio vectorial
Un conjunto de vectores S={v1, v2,…, vn} en un espacio vectorial V se denomina base de V si se cumplen las siguientes condiciones.
* S genera a V.
* S es linealmente independiente
Una base posee 2 características que se acaban de ver, debe tener suficientes valores para generar a V, pero no tantos de modo que uno de ellos pueda escribirse como una combinación lineal de los demás vectores en S. Si un espacio vectorial consta de un número finito de vectores, entonces V es de dimensión finita. En caso contrario, V es de dimensión infinita.

Base
En términos generales, una “base” para un espacio vectorial es un conjunto de vectores del espacio, a partir de los cuales se puede obtener cualquier otro vector de dicho espacio, haciendo uso de las operaciones en él definidas.

La base es natural, estándar o canónica si los vectores v1, v2,…, vnforman base para Rn.
Si S={v1, v2,…, vn} es una base para un espacio vectorial V entonces todo vector v en V se puede expresar como:
1.      V = c1v1+ c2v2+…+ cnvn
2.      V = k1v1+ k2v2+…+ knvn
Restar 2-1
            0 = (c1- k1) v1+(c2- k2) v2+…+(cn- kn) vn
Ejemplo:
demostrar si S = {v1, v2,…, v3} es base de R3, v= (1,2,1); v= (2,9,0); v= (3,3,4)
Proponer vector arbitrario, combinación lineal
b = c1v1+ c2v2+ c3v3
(b1, b2, b3) = c1(1,2,1)+ c2(2,9,0)+ c3(3,3,4)
(b1, b2, b3) = c1+2c2+3c3;2c1+9c2+3c3; c1+4c3

c1    + 2c+ 3c= b1                                      det A = [(1*9*4)+(2*3*1)+0]-[(1*9*3)+0+(4*2*2)]
2c+ 9c+ 3c= b2                  = [36+6]-[27+16]
  c1               + 4c= b3          = -1                                     
Si genera a R3                       

4.5 Espacio vectorial con producto interno y sus propiedades.

Producto Interno:

Un producto interno sobre un espacio vectorial V es una operación que asigna a cada par de vectores u y v en V un número real <u, v>.
Un producto interior sobre V es una función que asocia un número real ‹u, v› con cada par de vectores u y v cumple los siguientes axiomas:
Propiedades:

i. (v, v) ≥ 0
ii. (v, v) = 0 si y sólo si v = 0.
iii, (u, v +w) = (u, v)+ (u, w)
iv. (u + v, w) = (u, w)+(v, w)
v. (u, v) = (v, u)
vi. (αu, v) = α(u, v)
vii. (u, αv) = α(u, v)
Espacios con producto interior:
El producto interior euclidiano es solo uno más de los productos internos que se tiene que definir en Rn Para distinguir entre el producto interno normal y otros posibles productos internos se usa la siguiente notación.
u ●v = producto punto (producto interior euclidiano para Rn)
‹u, v› = producto interno general para espacio vectorial V.

Propiedades de los productos interiores:
1. ‹0, v› = ‹v, 0› = 0
2. ‹u + v, w› = ‹u, w› + ‹v, w›
3. ‹u, cv› = c‹u, v›.
Un espacio vectorial con producto interno se denomina espacio con producto interno.

4.6 Base ortonormal, proceso de ortonormalización de Gram-Schmidt.



Definición de conjunto ortogonales y conjuntos ortonormales

Un conjunto de vectores en un espacio V con producto interior se llama ortogonal si todo par de vectores en S es ortogonal, además cada vector en este conjunto es unitario, entonces S se denomina ortonormal

Proceso de ortonormalización de Gram-Schmidt

1.       Sea B = {v1v2, . . ., vn} una base de un espacio V con producto interno
2.      Sea = {w1w2, . . ., wn} donde wi está dado por:

w1= v1

 


Entonces B´ es una base ortogonal de V.
3.      Sea ui= wi ││w1││ entonces el conjunto B´´={ u1, u2, . . ., un} es una base ortonormal de V.

Ejemplo: Forma alternativa del proceso de ortonormalización de Gram-Schmidt
Determine una base ortonormal del espacio solución del siguiente sistema homogéneo de ecuaciones lineales

w+ x +           z= 0
2w+x + 2y+ 6z=0

Solución: La matriz aumentada se reduce como se sigue.

 --> 

Entonces cada solución del sistema es de la forma


Una base del espacio solución es:

B= {v1, v2,} = {(-2,2,1,0), (1,-8,0,1)}.

Para hallar una base ortonormal B´= {u1u2}, se usa la forma alternativa del proceso de ortonormalización de Gram- Schmidt como sigue.



Construcción de un conjunto ortonormal.