Definición: Las transformaciones lineales son las funciones y tratan sobre K-espacios vectoriales que son compatibles con la estructura (es
decir, con la operación y la acción) de estos espacios.
Aquí se presentan las funciones entre espacios vectoriales que preservan las cualidades de los
espacios vectoriales. Es decir, de funciones que preservan la suma y la multiplicación por escalares.
Nosotros usaremos el concepto de la función para darle un tratamiento a los sistemas de ecuaciones lineales. La restricción que haremos sera sobre el tipo de funciones: solo estaremos interesados en funciones que preserven las operaciones en el espacio vectorial. Este tipo de funciones serán llamadas funciones lineales. Primeramente las definiremos, veremos algunas propiedades generales y después veremos como se aplican estos resultados a sistemas de ecuaciones.
Sean V y W dos espacios vectoriales posiblemente iguales.
Una transformación lineal o mapeo lineal de V a W es una función
T : V → W tal que para todos los vectores u y v de V y cualquier escalar c:
a) T (u + v) = T (u) + T (v)
b) T (c u) = c T (u)
Demuestre que la transformación T : R2 →R2 definida por
espacios vectoriales. Es decir, de funciones que preservan la suma y la multiplicación por escalares.
Nosotros usaremos el concepto de la función para darle un tratamiento a los sistemas de ecuaciones lineales. La restricción que haremos sera sobre el tipo de funciones: solo estaremos interesados en funciones que preserven las operaciones en el espacio vectorial. Este tipo de funciones serán llamadas funciones lineales. Primeramente las definiremos, veremos algunas propiedades generales y después veremos como se aplican estos resultados a sistemas de ecuaciones.
Sean V y W dos espacios vectoriales posiblemente iguales.
Una transformación lineal o mapeo lineal de V a W es una función
T : V → W tal que para todos los vectores u y v de V y cualquier escalar c:
a) T (u + v) = T (u) + T (v)
b) T (c u) = c T (u)
Demuestre que la transformación T : R2 →R2 definida por
es lineal.
Entonces :
Por otro lado, para todo escalar c,
Como se cumplen las dos condiciones:
T es lineal.
Una transformación lineal preserva combinaciones lineales. Veremos que, debido a esto, una transformación lineal queda unívoca-mente determinada por los valores que toma en los elementos de una base cualquiera de su dominio.
Teniendo en cuenta que las transformaciones lineales son funciones entre conjuntos, tiene sentido estudiar la validez de las propiedades usuales de funciones: inyectividad, suryectividad y biyectividad.
Las transformaciones lineales que verifican alguna de estas propiedades reciben nombres particulares:
Definición 3.6 Sean V y W dos K-espacios vectoriales, y sea f : V → W una transformación lineal. Se dice que:
1. f es un monomorfismo si f es inyectiva.
2. f es un epimorfismo si f es suryectiva.
3. f es un isomorfismo si f es biyectiva.
En algunos casos, consideraremos transformaciones lineales de un K-espacio vectorial en s ́ı mismo:
Sea V un K-espacio vectorial.
Una transformación lineal f : V → V se llama un endomorfismo de V . Si f es un endomorfismo que es además un isomorfismo, entonces se dice que es un automorfismo.
Transformaciones lineales: núcleo e imagen.
Teorema 1
Sea T: V S W una transformación lineal. Entonces para todos los vectores u, v,v1,
v2, . . . , vn en V y todos los escalares a1, a2, . . . , an:
i. T(0) = 0
ii. T(u - v) = Tu - Tv
iii. T(a1v1 + a2v2 +. . .+ anvn) = a1Tv1 + a2Tv2 +. . .+ anTvn
Nota. En la parte i) el 0 de la izquierda es el vector cero en V; mientras que el 0de la
derecha es el vector cero en W.
Teorema 2
Sea V un espacio vectorial de dimensión finita con base B = {v1, v2, . . . , vn}. Sean w1,
w2, . . . , wn vectores en W. Suponga que T1 y T2 son dos transformaciones lineales de V
en W tales que T1vi = T2vi = wi para i = 1, 2, . . . , n. Entonces para cualquier vector v ∈
V, T1v = T2v; es decir T1 = T2.
Ejemplo
Definición 1 Núcleo e imagen de una transformación lineal
Sean V y W dos espacios vectoriales y sea T:V W una transformación lineal. Entonces
Observacion 1. Observe que un T es no vacio porque, de acuerdo al teorema 1, T(0) = 0 de manera que 0 ϵ un T para cualquier transformación lineal T. Se tiene interés en encontrar otros vectores en V que “se transformen en 0”. De nuevo, observe que cuando escribimos T(0) = 0, el 0 de la izquierda está en V y el de la derecha en W.
Observación 2. La imagen de T es simplemente el conjunto de “imajenes” de los vectores en V bajo la transformación T. De hecho, si w = Tv, se dice que w es la imagen de v bajo T.
Antes de dar ejemplos de núcleos e imágenes , se demostrará un teorema de gran utilidad.
Teorema 4
Si T:V W es una transformación lineal, entonces
i.Un T es un subespacio de V.
ii.Im T es un subespacio de W.
Demostracion
i.Sean u y v en un T; Entonces T(u + v) = Tu + Tv =0 + 0 =0 y T( ) = = 0 = 0 de forma que u + v y ∝u están en un T.
ii. Sean w y x en Im T. Entonces w = Tu y x = Tv para dos vestores u y v en V. Esto significa que T(u + v)= Tu + Tv = w + x y T(∝u) = ∝Tu =∝w. Por lo tanto, w + x y ∝w están en Im T.
Ejemplo 3. Núcleo e imagen de la transformación cero
Sea Tv = 0 para todo vϵ V(T es la transformación cero). Entonces un T = v e Im T = {0}.
Ejemplo 4 Núcleo e imagen de la transformación identidad
Sea Tv = v para vϵ V(T es la transformación identidad). Entonces un T= {0} e Im T = V.
Las transformaciones cero e identidad proporcionan dos extremos. En la primera todo se encuentra en el núcleo. En la segunda sólo el vector cero se encuentra en el núcleo. Los casos intermedios son más interesantes.
Ejemplo 5 Núcleo e imagen de un operador de proyección
Sea T:R3 R3 definida por
Entonces x = y = 0. Así, nu T = {(x,y,z):x = y = 0, zϵR}, es decir, el eje z, e Im T = {(x,y,z): z = 0}, es decir el plano xy. Observe que dim un T = 1 y dim Im T = 2.
Definición 2 Nulidad y rango de una transformación lineal
Si T es una transformación lineal de v en w, entonces se define.
Toda matriz A de m*n da lugar a una transformación lineal T:R´´ R´´´ definida por Tx = Ax. Es evidente que un T = NA, Im T = Im A = CA, v(T) = v(A) y p(T) = p(A). Entonces se ve que las definiciones de núcleo, imagen, nulidad y rango de una transformación lineal son extensiones del espacio nulo, la imagen, la nulidad y el rango de una matriz.
La matriz de una transformación lineal
Desde el punto de vista algebraico lineal, las transformaciones más importantes son las aquellas que conservan las combinaciones lineales. Estas son llamadas transformaciones lineales o aplicaciones lineales. Una transformación lineal es una parte esencial en el álgebra lineal. La idea principal detrás de la “Matriz de una transformación lineal” es la definición de la matriz de T con respecto a las bases arbitrarias del dominio de V y el codominio de W. En este caso, V y W son espacios vectoriales de dimensión finita sobre F, y T: V → W es una transformación lineal.
Sea V y W espacios vectoriales de finita dimensión sobre F, e imagina que T: V! W es lineal. Fija una base
B = {v1, v2. . . vn}
de V y una base de
B0 = {w1, w2. . . wm}
de W. Ahora definimos la matriz MBB’ (T) de T con respecto a estas bases. Puesto que B0 es una base de W, cada T (vj) puede escribirse únicamente como
T(v j) =
Por lo tanto la matriz de T, en definitiva, con respecto a las bases B y B0 se define como la matriz MBB’ (T) = (cij ) m × n . ¿Lo qué dice esta definición es que la columna jth de la matriz MBB’(T) es el vector columna formado por los coeficientes de T(vj) con respecto a la base B0? Uno puede expresar el término anterior en forma matricial mediante
(T(v1) T(v2) • • • T(v n)) = (w1 w2 • • •wm)MBB ’(T).
Es importante tener en cuenta que si V = Fn, W = Fm y T = TA, donde A Fm×n, entonces MBB’(T) = A si B y B0 son las bases estándares. De TA (ej) es siempre la columna jth de A.
Ahora, sea V el espacio de polinomios reales de al menos tres grados, y W el espacio de polinomios reales de a lo sumo dos grados. Entonces, la diferenciación es una transformación lineal D: V → W. Ahora
D (ax3 + bx2 + cx + d) = 3ax2 + 2bx + c.
Sea B la base {1, x, x2, x3} de V y B0 la base {1, x, x2} de W. Ahora,
D (1) = 0, D(x) = 1, D(x2) = 2x, D(x3) = 3×2.
Así
MBB’(D) =
Ahora bien, supongamos que T: V → V es una transformación lineal diagonalizable (o semi-simple). Recordemos que esto significa que existe una base B = {v1, v2. . . vn} de V tal que (vi) = vi para cada índice i entre 1 y n. Por lo tanto, B es una base propia de V para T. En este caso, MBB (T) es la matriz diagonal .
Pero, ¿Qué es la matriz de T con respecto a alguna otra base B0 de V? El primer paso para responder a esta pregunta es encontrar cómo relacionar las expansiones de un vector dado de V con respecto a dos bases distintas. Esto por sí solo constituye un concepto diferente y más amplio que necesita de un conocimiento muy superior y más profundo de las matemáticas .
5.4 Aplicación de las transformaciones lineales: reflexión, dilatación, contracción y rotación.
Aplicación de las transformaciones lineales: reflexión, expansión, contracción y rotación
Graficar un conjunto de puntos en otro es lo que se conoce como transformación lineal de un conjunto de puntos. Existen ciertas propiedades básicas de las transformaciones lineales, las cuales si son tomadas en cuenta y aplicadas al momento de resolver un problema, pueden reducirlo un problema simple. La notación general utilizada para una transformación lineal es T: Rn Rm.
1. Reflexión: Cuando un conjunto de puntos dados es graficado desde el espacio euclidiano de entrada a otro de manera tal que este es isométrico al espacio euclidiano de entrada, llamamos a la operación realizada la reflexión del conjunto de puntos dado. Esto puede realizarse también con respecto a la matriz, en tal situación la matriz de salida es llamada la matriz de reflexión. La reflexión es realizada siempre con respecto a uno de los ejes, sea el eje x o el eje y. Esto es como producir la imagen espejo de la matriz actual.
2. Expansión: Al igual que en la reflexión, también es posible expandir los puntos dados en una dirección particular. La expansión se realiza habitualmente para un cierto grado. Es como realizar una operación de multiplicación de los elementos del conjunto de puntos dados con un término escalar hacia la dirección donde tiene que ser expandido. Sea para un punto (2, 3) si el grado de expansión 2 es la dirección de y, entonces el nuevo punto obtenido es (2, 6).
3. Contracción: La contracción es el procedimiento inverso de la expansión. Aquí el punto es contraído en un determinado grado hacia una dirección dada. Sea el punto de entrada (4, 8) y este debe ser contraído para el grado dos en la dirección de x entonces el nuevo punto resulta ser (2, 8).
4. Rotación: El término rotación tiene dos significados, ya la rotación de un objeto puede ser realizada con respecto al eje dado o al eje mismo. La rotación se realiza para un cierto grado el cual es expresado en forma de un ángulo. Asimismo, la rotación puede realizarse en la dirección de las manecillas del reloj, o inverso a las manecillas del reloj.
Como ejemplo, dirijámonos a producir la matriz estándar para la representación de la transformación lineal reflejando un conjunto de puntos en el plano x-y a través de la recta y = (−2x / 3).
El primer paso para esto es determinar los vectores base.
Por lo tanto, podemos afirmar que,
Dado que y pertenece a R2. Imagina que A: R2 R2 es una transformación lineal, entonces podemos escribir que,
La imagen de la matriz base determina la imagen de cualquier elemento. Por lo tanto la imagen de a través de y = (−2x/ 3) es determinada mediante la obtención de una recta que pasa por (1, 0) y es que es ortogonal a . Esto está dado por y = (3x/ 2) – (3/ 2).
El punto donde las dos rectas, esto es, y = (3x/ 2) – (3/ 2) e y = (−2x/ 3) se intersectan se dado como (9/13, −6/13). Tomamos p¬1¬ para ser el punto de reflexión de a través de la recta dada. Este punto es simétrico respecto a (9/13, −6/13) por lo tanto, podemos escribir que,
Esto produce,
De manera similar, la imagen del vector base resulta ser
Y tenemos la matriz de transformación lineal final como,